Tham khảo Khả biến thần kinh

  1. Livingston R.B. (1966). “Brain mechanisms in conditioning and learning”. Neurosciences Research Program Bulletin 4 (3): 349–354. 
  2. Rakic, P. (tháng 1 năm 2002). “Neurogenesis in adult primate neocortex: an evaluation of the evidence”. Nature Reviews Neuroscience 3 (1): 65–71. PMID 11823806. doi:10.1038/nrn700
  3. Pascual-Leone A.; Amedi A.; Fregni F.; Merabet L. B. (2005). “The plastic human brain cortex”. Annual Review of Neuroscience 28: 377–401. doi:10.1146/annurev.neuro.27.070203.144216
  4. 1 2 Pascual-Leone A.; Freitas C.; Oberman L.; Horvath J. C.; Halko M.; Eldaief M. và đồng nghiệp (2011). “Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI”. Brain Topography 24: 302–315. doi:10.1007/s10548-011-0196-8
  5. Ganguly K, Poo MM (tháng 10 năm 2013). “Activity-dependent neural plasticity from bench to bedside”. Neuron 80 (3): 729–741. PMID 24183023. doi:10.1016/j.neuron.2013.10.028. Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. ... Neural plasticity can be broadly defined as the ability of the nervous system to adopt a new functional or structural state in response to extrinsic and intrinsic factors. Such plasticity is essential for the development of the nervous system and normal functioning of the adult brain. Neural plasticity can manifest at the macroscale as changes in the spatiotemporal pattern of activation of different brain regions, at the mesoscale as alterations of long-range and local connections among distinct neuronal types, and at the microscale as modifications of neurons and synapses at the cellular and subcellular levels. Maladaptive neural plasticity may account for many developmental, acquired, and neurodegenerative brain disorders. 
  6. Keller TA, Just MA (tháng 1 năm 2016). “Structural and functional neuroplasticity in human learning of spatial routes”. Neuroimage 125: 256–266. PMID 26477660. doi:10.1016/j.neuroimage.2015.10.015. Recent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. ... These concurrent changes characterize the multidimensionality of neuroplasticity as it enables human spatial learning. 
  7. “The Greek Era and the Beginning Disagreements between Science and Religion”. Spafer. Spafer. 
  8. Doidge, Norman (2007). The Brain that Changes Itself. Penguin Books. tr. 22. 
  9. Buonomano, Dean V.; Merzenich, Michael M. (tháng 3 năm 1998). “CORTICAL PLASTICITY: From Synapses to Maps”. Annual Review of Neuroscience 21: 149–186. PMID 9530495. doi:10.1146/annurev.neuro.21.1.149
  10. Shaw, Christopher; McEachern, Jill biên tập (2001). Toward a theory of neuroplasticity. London, England: Psychology Press. ISBN 978-1-84169-021-6
  11. "The Principles of Psychology", William James 1890, Chapter IV, Habits
  12. LeDoux, Joseph E. (2002). Synaptic self: how our brains become who we are. New York, United States: Viking. tr. 137. ISBN 0-670-03028-7
  13. Hubel, D.H.; Wiesel, T.N. (ngày 1 tháng 2 năm 1970). “The period of susceptibility to the physiological effects of unilateral eye closure in kittens”. The Journal of Physiology 206 (2): 419–436. PMC 1348655. PMID 5498493
  14. Ponti, Giovanna; Peretto, Paolo; Bonfanti, Luca; Reh, Thomas A. (2008). Reh, Thomas A., biên tập. “Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits”. PLoS ONE 3 (6): e2366. PMC 2396292. PMID 18523645. doi:10.1371/journal.pone.0002366
  15. Wall, J.T.; Xu, J.; Wang, X. (tháng 9 năm 2002). “Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body”. Brain Research Reviews (Elsevier Science B.V.) 39 (2–3): 181–215. PMID 12423766. doi:10.1016/S0165-0173(02)00192-3
  16. Doidge, Norman (2007). The Brain That Changes Itself: Stories of Personal Triumph from the frontiers of brain science. New York: Viking. ISBN 978-0-670-03830-5
  17. Merzenich, M.M.; Nelson, R.J.; Stryker, M.P.; Cynader, M.S.; Schoppmann, A.; Zook, J.M. (1984). “Somatosensory Cortical Map Changes Following Digit Amputation in Adult Monkeys”. Journal of Comparative Neurology 224 (4): 591–605. PMID 6725633. doi:10.1002/cne.902240408

Liên quan

Tài liệu tham khảo

WikiPedia: Khả biến thần kinh http://journals.lww.com/headtraumarehab/Fulltext/2... http://neurophilosophy.wordpress.com/2006/10/05/ra... http://www.smpp.northwestern.edu/savedLiterature/D... http://psyphz.psych.wisc.edu/web/News/Meditation_A... //www.ncbi.nlm.nih.gov/pmc/articles/PMC1526649 //www.ncbi.nlm.nih.gov/pmc/articles/PMC2390875 //www.ncbi.nlm.nih.gov/pubmed/11823806 //www.ncbi.nlm.nih.gov/pubmed/12403992 //www.ncbi.nlm.nih.gov/pubmed/16222128 //www.ncbi.nlm.nih.gov/pubmed/16713245